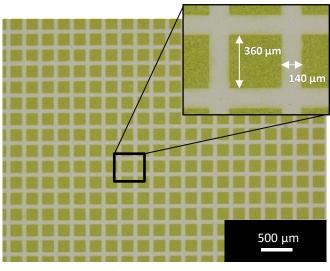

GAGG micro-array

 $Gd_3Al_2Ga_3O_{12}$ (Ce)


Patent No.:EP2671940(B1), US8969812(B2), RU2622124(C2), JP5952746(B2) EP3138891(B1), US10174247(B2), RU2670919(C9)

| Product Information

GAGG single crystal *1 micro-array

^{*1} Kamada et al., J. Cryst. Growth, 452 (2016) 81-84.

Enlarged view of the sample surface

Outline

GAGG micro-arrays with pixel size starting from 200 μ m and minimum gap size of 60 μ m are available.

Please contact us for the required number of channels.

(GAGG is an oxide scintillator with high brightness and high energy resolution, and it is neither deliquescent nor self-radiating.)

Shape

Pixel [μm]	200 ~
Gap [μm]	60 ~

GAGG's scintillation properties *2

Light yield [photons/MeV]	50,000 - 56,000
Energy resolution*3 (662 keV, FWHM) [%]	5-6
Decay time [ns]	92 (86%), 174 (14%)
Emission wavelength[nm]	520
Density [g/cm³]	6.63

C&A Corporation

The measurement condition and data are at the time of evaluation and may not apply to all cases. Please consider as a reference case.

 $^{^{*2}}$ All properties were measured using 5 x 5 x 5 mm³ sample.

^{*3} Energy resolution was measured with APD.